Home
Class 12
MATHS
lim(x rarr 1) (x^(8)-2x+1)/(x^(4)-2x+1) ...

`lim_(x rarr 1) (x^(8)-2x+1)/(x^(4)-2x+1) =`

A

3

B

0

C

(-3)

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 1) (x^(18)-1)/(x^(6)-1) =

lim_(x rarr oo) (2x^(2)-x-1)/(x^(2)+x-2) =

lim_(x rarr -1) (x^(9)+1)/(x^(14)-1)=

lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

lim_(x rarr 4) (x^(3/2)-8)/(x-4) =

If the function f(x) satisfies lim_(x rarr 1) (f(x) - 2)/(x^(2) - 1) = pi , then lim_(x rarr 1) f(x) =

lim_(x rarr -1) (x^(2)+3x+2)/(x^(2)+4x+3) =

lim_(x rarr 0) ((1+x)^(n)-1)/x is

If f(2) = 2 and f^(')(2) = 1 , then lim_(x rarr 2) (2x^(2)-4 f(x))/(x-2) =