Home
Class 12
MATHS
lim(n rarr oo) (1+(sin) a/n)^(n) equals...

`lim_(n rarr oo) (1+(sin) a/n)^(n)` equals

A

`e^(a)`

B

e

C

`e^(2a)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) sum_(r=1)^(n) r/n^(2) sec^(2) (r^(2)/n^(2)) =

Let the rth term, t_(r) , of a series is given by : t_(r) = (r)/(1+r^(2) + r^(4)) . "Then" lim_(n rarr oo) sum_(r = 1)^(n) t_(r) equals :

If 0 lt x lt y , then lim_(n rarroo)(y^(n)+x^(n))^(1/n) is equal to

lim_(n rarr oo) (sin n theta)/(sqrt n) =

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =