Home
Class 12
MATHS
lim(x rarr 0) (4^(x)-1)/(3^(x)-1) =...

`lim_(x rarr 0) (4^(x)-1)/(3^(x)-1) =`

A

`log_(3)4`

B

`log_(4)3`

C

`log_(e)4`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr 0) (log (1+x))/(3^(x) - 1)=

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) - 1) is :

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) -1) =

lim_(x rarr 0) (a^(sinx)-1)/(b^(sinx)-1) =

lim_(x rarr 0) (a^(x)-b^(x))/x =