Home
Class 12
MATHS
The value of lim(n rarr oo){1/1.3+1/3.5+...

The value of `lim_(n rarr oo){1/1.3+1/3.5+1/5.7+...+1/((2n+1)(2n+3))}` is

A

1

B

(1/2)

C

(-1/2)

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) 1/n^(3) { 1+3+6+...+ (n(n+1))/2} =

k ne -1 is a constant. The value of lim_(n to oo)(1^k + 2^k + …. + n^k)/(k(n^(k+1))) is

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

lim_(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=

lim_(x rarr oo) (1+2/n)^(2n)=

The value of lim_(x rarr oo) (3^(x+1) - 5^(x+1))/(3^(x)-5^(x) is

lim_(n rarr oo) {1/n+1/(n+1)+1/(n+2)+…..+1/(3n)} =

lim_(n rarr oo) [1/(n+1)+1/(n+2)+…….+1/(2n)]=