Home
Class 12
MATHS
The valueof lim(x rarr 0) (e^(ax)-e^(bx)...

The valueof `lim_(x rarr 0) (e^(ax)-e^(bx))/x` is

A

a+b

B

a-b

C

`e^(ab)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr 0) (3^(x)-2^(x))/x=

The value of lim_(x rarr 0) (e^(x)-e^(sinx))/(2 (x-sinx))=

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr 0) (1+ax)^(b/x)=

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

lim_(x rarr 0) (1-ax)^(1/x) =

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =

lim_(x rarr 0) ((1+x)^(n)-1)/x is