Home
Class 12
MATHS
The value of lim(x rarr 0) ((4^(x)-1)^(3...

The value of `lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) ` is

A

`4/3 (log 4)^(2)`

B

`4/3 (log 4)^(3)`

C

`3/2 (log 4)^(2)`

D

`3/2 (log 4)^(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr 0) (sin(4x)/(5x) )=

lim_(x rarr 0) (tan^(-1)7x)/(sin 4x) =

lim_(x rarr 0) (4^(x)-9^(x))/(x*(4^(x)+9^(x)) ) =

lim_(x rarr 0) (2^(x)-1)/((1+x) ^ (1/2) -1) =

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (1-ax)^(1/x) =