Home
Class 12
MATHS
The value of lim(x rarr oo) (sinx)/(x) i...

The value of `lim_(x rarr oo) (sinx)/(x)` is

A

1

B

0

C

(-1)

D

none existence

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos
  • LINEAR INEQUALITIES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|54 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (|sin x|)/x is

lim_(x rarr 0) (sin(4x)/(5x) )=

The value of lim_(x rarr oo) {(x^(2)sin ((1)/(x))-x)/(1-|x|)} is :

The value of lim_(n rarr oo) cos ((x)/(2)) cos ((x)/(4))cos ((x)/(8))…...cos((x)/(2^(n))) is

The value of lim_(x rarr 0) ((e^(x)-1)/x)

The values of lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t In (1 + t))/(t^(4) + 4)dt is :

lim_(x rarr oo) (1-2/x)^(x) =

The value of lim_(x rarr 0) (e^(x)-e^(sinx))/(2 (x-sinx))=

The value of lim_(x rarr oo) (3^(x+1) - 5^(x+1))/(3^(x)-5^(x) is

The value of lim_(x rarr 0) (sqrt(a+x)- sqrt(a-x))/x =