Home
Class 12
MATHS
If y = sqrt((secx +tanx)/(secx -tan x)) ...

If `y = sqrt((secx +tanx)/(secx -tan x))` and `0 lt x lt pi/2`, then dy/dx =

A

sec x(sec x - tanx)

B

tanx (sec x + tan x)

C

sec x(sec x +tan x)

D

tan(sec x - tanx)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If y = sqrt((cosec x - cot x)/(cosec x + cot x)) and 0lt x lt pi/2 then, dy/dx =

If y = tan^(-1) [(sqrt(1+sinx) + sqrt(1-sinx ))/(sqrt(1+sinx)-sqrt(1-sin x))], 0 lt xlt pi/2 then dy/dx =

If y = tan^(-1) (sec x - tanx) then dy/dx =

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

int(secx)/(secx+tanx)dx=

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

If y = (1+x^(2)) tan^(-1) x -x , then dy/dx =

Find intsecx(secx+tanx)dx