Home
Class 12
MATHS
If x = e^(tan^(-1)((y-x^(2))/x^(2)) then...

If `x = e^(tan^(-1)((y-x^(2))/x^(2))` then dy/dx =

A

`2x[1+tan(log x)]+x sec^(2)(log x)`

B

`2x[1+tan(log x)]+sec^(2)(log x)`

C

`2x[1+tan(log x)]+x^(2) sec^(2)(log x)`

D

`2x[1+tan(log x)]+sec^(2)(log x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

If y = e^(x^(x)) then dy/dx =

If y = e^(x^(e)) then dy/dx =

If y = tan^(-1)((x+a)/(1-xa)) then (dy)/(dx) =

If tan^(-1)(x^(2)+y^(2))=alpha then (dy)/(dx) is equal to

If y = x(e^(x)) then dy/dx =

y=log_e(tan^(- 1)sqrt(1+x^2)) then dy/dx is

int (e^(tan^(-1)x))/(1+x^2) dx .