Home
Class 12
MATHS
If y^(x) = e^(y -x), prove that (dy)/(dx...

If `y^(x) = e^(y -x)`, prove that `(dy)/(dx) = ((1 + log y)^2)/(log y)`.

A

`y/(1+ log y)`

B

`(x-y)/(1+ log y)^(2))`

C

(x-y)/(1+ log y)

D

`(log Y)/((1+logy)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If x = e^(x/y) , prove that (dy)/(dx) = (x-y)/(x log x) .

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If y=e^(log x) , show that dy/dx=1

If y= e^(3log x) , then show that (dy)/(dx)= 3x^(2) .

Solve (dy)/(dx)=(y)/(2y log y+y-x).

If x^(y)=a^(x) , prove that dy/dx=(xlog_(e)a-y)/(xlog_(e)x) .

If y = 2^(log x) , then (dy)/(dx) is