Home
Class 12
MATHS
If 2^(x)+2^(y)=2^(x+y), then (dy)/(dx) i...

If `2^(x)+2^(y)=2^(x+y)`, then `(dy)/(dx)` is

A

`(2^(x)+2^(y))/(2^(x)-2^(y))`

B

`(2^(x)+2^(y))/(1+2^(x+y))

C

`2^(x-y)((2^(y)+1)/(1-2^(x)))`

D

`(2^(x)+2^(x+y))/2^(x)'

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If y = 2^(log x) , then (dy)/(dx) is

If y=x^(x^(2)), then (dy)/(dx) equals

If 2^(x) + 2^(y) = 2^(x+y) , then the value dy/dx at x = y =1 is

If y = 2^(-x) then dy/dx =

If y^(2) -2x^(2) = y , then dy/dx at (1,-1) is

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =

Solve (dy)/(dx)+2y=cos x.