Home
Class 12
MATHS
If g(x) = 1/sqrt(9+x^(2) then lim(x rarr...

If `g(x) = 1/sqrt(9+x^(2)` then `lim_(x rarr 4) ((g(x) - g(4))/(x-4) )=`

A

4/375

B

(-4/125)

C

375/4

D

(-375/4)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If g(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (g(x)-g(1))/(x-1) =

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =

lim_(x rarr 4) (x^(3/2)-8)/(x-4) =

lim_(x rarr oo) ((x-2)(x+4))/(x(x-9)) =

lim_(x rarr oo) ((x+6)/(x+1))^(x+4) =

lim_(x rarr 0) (1-cos 4x)/(x2) =

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (sin^(2)(x/4))/(x^(2)) =

lim_(x rarr oo) (1-4/(x-1))^(3x-1) =