Home
Class 12
MATHS
If x^(y) = e^(x-y) then (dy)/(dx) is eq...

If ` x^(y) = e^(x-y)` then `(dy)/(dx)` is equal to

A

(log x)/((1+log x)^(2)`

B

`(1-x)/(y+xlogy)

C

(x-y)/(1+log x)

D

`(-log x)/(-(1+logx)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If (xe)^(y)=e^(x) , then (dy)/(dx) is

If x^(x) = y^(y) , then (dy)/(dx) is

If y=ce^(x//(x-a)) , then 1/y(dy)/(dx) is equal to :

If y = x+e^(x) , then (d^(2)y)/(dx^(2)) is equal to

If x^(m)y^(n) = (x + y)^(m +n) then (dy)/(dx) is equal to

If x^(y) = e^(x-y), (dy)/(dx) =

If x^(y) = y^(x) find (dy)/(dx)

If x^y = e^(x-y), dy/dx=

If y = x(e^(x)) then dy/dx =