Home
Class 12
MATHS
If log (x+y) = 2xy, then y^(')(0) =...

If log (x+y) = 2xy, then `y^(')(0) =`

A

1

B

(-1)

C

2

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If y is a function of x and log(x+y)-2xy=0 , then y'(0) is equal to :

If y = 2^(log x) , then (dy)/(dx) is

If sin(x+y)+cos (x+y)=log(x+y) , then (d^(2)y)/(dx^(2))=

If m sin^(-1) x = log _(e) y , then (1 - x^(2)) y'' - xy' =

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If y = log (log x), then (d^(2)y)/(dx^(2)) is equal to

If (dy)/(dx)=y + 3 gt 0 and y (0) = 2 , then y (ln 2) is equal to :

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(2) + 1/y^(2) equals .