Home
Class 12
MATHS
If x = a cos^(3) theta , y = a sin^(3) t...

If `x = a cos^(3) theta , y = a sin^(3) theta , ` then `1+((dy)/(dx))^(2)` is _______

A

`tan^(2) theta`

B

`sec^(2)theta`

C

`sec theta`

D

`|sec theta|`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

If x=a cos ^(3) theta and y = a sin^(3) theta then (dy)/( dx) =

If x=acos^(3)theta and y=asin^(3)theta , then (dy)/(dx)=

x = a cos theta, y = b sin theta .

Find the slope of the normal to the curve x = a cos^(3)theta, y = a sin^(3) theta at theta = (pi)/3 .

If x=sectheta-costheta,y=sec^(n)theta-cos^(n)theta , then ((dy)/(dx))^(2) is :

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :

If x = a (cos x + log tan theta/2) and y = a sin theta then dy/dx is equal to

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

Find (dy)/(dx), " if "x= a cos theta, y= a sin theta .