Home
Class 12
MATHS
If sin x = (2t)/(1+t^(2)), tan y = (2t)/...

If `sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))`, then `(dy)/(dx)` is equal to

A

0

B

cos x

C

tan x

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos
  • ELLIPSE

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|172 Videos

Similar Questions

Explore conceptually related problems

if sinx =(2t)/(1+t^(2)) , tany= (2t)/(1- t^(2)) then (dy)/(dx) is equal to

If x = (1-t^(2))/(1+t^(2)) and y = (2t)/(1+t^(2)) then dy/dx =

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

If y = e^(sin^(-1)(t^(2)-1)) & x = e^(sec-1((1)/(t^(2-1))) then (dy)/(dx) is equal to

If tan^(-1)(x^(2)+y^(2))=alpha then (dy)/(dx) is equal to

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =