Home
Class 12
MATHS
int e^(x)/(e^(x)+1) dx =...

`int e^(x)/(e^(x)+1) dx =`

A

`x- log (e^(x)+1)+c`

B

` log (e^(x)+1)+c`

C

`(e^(x)+1)/2+c`

D

`e^(x)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)-1)/(e^(x)+1) dx =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int e^(x)/((2+e^(x))(e^(x) +1)) dx =

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

int_(log (1/2))^(log2) sin ((e^(x)-1)/(e^(x)+1)) dx =

int e^(x log a).e^(x) dx =

int x^(2)(e^(x^3))dx =

int x/(e^(x^2)) dx