Home
Class 12
MATHS
int e^(x)/(e^(x)+1) dx =...

`int e^(x)/(e^(x)+1) dx =`

A

1/4 tan^(-1) x

B

1/4 coth x

C

minus 1/4 coth x

D

minus 1/4 tanh x

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)-1)/(e^(x)+1) dx =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int e^(x)/((2+e^(x))(e^(x) +1)) dx =

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

int_(log (1/2))^(log2) sin ((e^(x)-1)/(e^(x)+1)) dx =

int e^(x log a).e^(x) dx =

int x^(2)(e^(x^3))dx =

int x/(e^(x^2)) dx