Home
Class 12
MATHS
int(sec^(2)xdx)/(log (tan x)^(tanx)) =...

`int(sec^(2)xdx)/(log (tan x)^(tanx)) =`

A

`log [log (tan x)^(tanx)]`

B

log (log tan x)

C

log ((log tan x)/(tan x))

D

log [(tan x)/(log (tan x))]

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (sec x dx)/(log (sec x +tan x)) =

int (cosec x)/(log (tan)x/2)dx =

The integral int (sec^(2) x)/((sec x+tan x)^(9//2))dx equals : (for some arbitrary constant k)

int e^(log(tan x) dx =

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then

int_0^(pi//2) log(tan x)dx =

int sec^(5)x tanx dx

int (cosecx)/(cos^(2) (1+ log tan (x/2)) dx =

int x^(2)sec x^(3)dx

int(cosec x)/(cos^(2)(1+"log tan"(x)/(2)))dx=