A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
HIMALAYA PUBLICATION-INDEFINITE INTEGRAL-QUESTION BANK
- int(sec^(2)xdx)/(log (tan x)^(tanx)) =
Text Solution
|
- int (e^(sqrtx).cose^(sqrtx))/(sqrtx)dx =
Text Solution
|
- int (e^(x) (1+x))/(sin^(2)(xe^(x))) dx =
Text Solution
|
- Evaluate int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx
Text Solution
|
- int (cot x)/(log (sin x) ) dx =
Text Solution
|
- int dx/(sqrt(sin^(3)x.cosx))dx =
Text Solution
|
- int sqrt(tanx)/(sinx cosx) dx =
Text Solution
|
- int [1+2 tanx (tanx + sec x)]^(1/2) dx =
Text Solution
|
- int e^(x log a).e^(x) dx =
Text Solution
|
- int x . sqrt((2sin(x^(2)-1)-sin 2(x^(2)-1))/(2 sin (x^(2)-1)+ sin 2(x^...
Text Solution
|
- int (cosx + x sin x)/(x (x + cos x)) dx =
Text Solution
|
- int dx/(a sec x + b tanx) =
Text Solution
|
- int(1-(tan)x/2)/(1+(tan)x/2)dx =
Text Solution
|
- int (sinh x )/(1+ sinh^(2)x) dx=
Text Solution
|
- int (10x^(9)+10^(x) log (10))/(10^(x)+x^(10)) dx
Text Solution
|
- int (cosec x)/(log (tan)x/2)dx =
Text Solution
|
- int (sec x dx)/(log (sec x +tan x)) =
Text Solution
|
- int (tanx)/(log (sec x)) dx =
Text Solution
|
- int e^(3logx)(x^(4)+1)^(-1)dx is equal to :
Text Solution
|
- int cos[2 cot^(-1) sqrt((1-x)/(1+x))] dx =
Text Solution
|