Home
Class 12
MATHS
int(a^(-x)-b^(-x))dx =...

`int(a^(-x)-b^(-x))dx =`

A

`(a^(-x))/log a-(b^(-x))/log b`

B

`(a^(-x)-b^(-x)) (log a - log b)`

C

`(b^(-x))/log b - (a^(-x))/log a`

D

`b^(-x)-a^(-x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int a^(x/2)/(sqrt(a^(-x) - a^(x))) dx =

int x^(2)(e^(x^3))dx =

int (x+1)^(2)e^(x)dx =

inte^((e^(x)+x)) dx =

int e^(x)/(e^(x)+1) dx =

int (dx)/(e^(x)+e^(-x)) dx =

int(x^(3)+x^(5))dx.

Prove that int_(a)^(b)(x)dx = int_(a)^(b)f(a+b-x)dx and int_(pi/4)^(pi/3)(dx)/(1+sqrt(tanx)) .

int (ax^(2)-b)(dx)/(x sqrt(c^(2))x^(2) -(ax^(2) + b^(2))^(2)