Home
Class 12
MATHS
int e^(tan-1)x((1+x+x^2)/(1+x^2))dx equa...

`int e^(tan-1)x((1+x+x^2)/(1+x^2))dx` equals :

A

`xe^(tan^(-1))x`

B

`x^(2)e^(tan^(-1))x`

C

`1/xe^(tan^(-1))x`

D

`1/x^(2) tan^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is equal to

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

int e^(mtan^(-1)x)/(1+x^(2)) dx =

int (e^(tan^(-1)x))/(1+x^2) dx .

int_0^1 tan^(-1) (1 - x + x^2) dx equals :

int 2x^(x)(1+logx)dx equals :

inte^(x)((1-x)/(1+x^(2)))^(2)dx equal to

int e^(x)(1+sin x)/(1+cos x) dx is equal to

The value of the integral int e^(tan^(-1) x) * ((1 + x + x^(2)))/((1 + x^(2))) dx is equal to