Home
Class 12
MATHS
int (logx-1)/((logx)^(2)) dx =...

`int (logx-1)/((logx)^(2)) dx =`

A

x/ (log x)

B

(log x)/x

C

1/(log x)

D

(-x/(log x))

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int [(log x-1)/(1+(logx)^(2))]^(2) dx=

int dx/(x(1+logx)^(2) =

int((logx)^(2))/(x) dx .

Integrate the functions ((x+1)(x+logx)^(2))/x

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

Integrate the functions (e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))

Solve the equation (1-2(2logx)^(2))/(logx-2(logx)^(2))=1

int e^(3logx)(x^(4)+1)^(-1)dx is equal to :