Home
Class 12
MATHS
int x. 2^(x) dx =...

`int x. 2^(x) dx =`

A

`(2^(x))/(log 2)`(x+ log 2)`

B

`(2^(x))/((log 2)^(2))((log) e^(x)/2)`

C

`(2^(x))/((log 2)^(2))(x log 2-1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int x log 2x dx .

int x/(e^(x^2)) dx

int_0^(1) x^(2).e^(x) dx =

Find int x sec^(2) x dx.

int x^(2) log x dx .

int x.e^((x)^(2))dx =

int (sin 2x +cos 2x) dx = 1/sqrt2 sin (2x-a) then a =

If int_0^1 f(x) dx = 1, int_0^1 xf(x) dx = a, int_0^1 x^2 f(x) dx = a^2 , then int_0^1 (a - x)^2 f(x) dx is equal to :

inte^(x) (cot x-cot^(2)x)dx =

int_(0)^(4) (x + e^(2x)) dx .