Home
Class 12
MATHS
int (f(x).g^(')(x)-f^(')(x)g(x))/(f(x).g...

`int (f(x).g^(')(x)-f^(')(x)g(x))/(f(x).g(x)).[log g(x)-log f(x)]dx =`

A

`1/2[log ((g(x))/(f(x)))]^(2)`

B

`log ((g(x))/(f(x)))`

C

`(g(x))/(f(x)) log (g(x))/(f(x))`

D

`log ((f(x))/(g(x)))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (f^(')(x))/(f(x) log [f(x)]) dx =

int 2^(x)[f(x) log 2 +f^(')(x)]dx =

If the three functions f(x),g(x) and h(x) are such that h(x)=f(x).g(x) and f'(x).g'(x)=c , where c is a constant then (f^('')(x))/(f(x))+(g^('')(x))/(g(x))+(2c)/(f(x)*g(x)) is equal to

Let f be twice differentiable function such that f^('')(x) = -f(x) and f^(')(x) = g(x) . Also h(x) = [f(x)]^(2) + [g(x)]^(2). If h(4) = 7, then h(7) =

Find f'(x) if f(x) =log(cose^x)

Let f(x), g(x) be differentiable functions and f(1) = g(1) = 2, then : lim_(x rarr 1) (f(1) g(x) - f(x) g(1) - f(1) + g(1))/(g(x) - f(x)) equals :

Let f(a) = g(a) = k and their n^(th) order derivatives exist and are not equal for some n in N , further if lim_(x rarr a) (f(a)g(x)-f(a)-g(a) f(x)+g(a))/(g(x)-f(x)) = 4 then the value of k is

If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) and f'(a)g'(x)=c , where c is a constant, then : (f''(x))/(f(x))+(g''(x))/(g(x))+(2c)/(f(x)f(x)) is equal to :

int f(x) dx = g(x) , then int f(x)g(x) dx =