Home
Class 12
MATHS
If n(ne 1) in N and I(n) = int tan^(n) ...

If `n(ne 1) in N` and ` I_(n) = int tan^(n) x dx` then `I_(n)+I_(n-2) =`

A

`(tan^(n-2)x)/(n-2)`

B

`(tan^(n-1)x)/n`

C

`(tan^(n-1)x)/(n-1)`

D

`(tan^(n-2)x)/n`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

If n in N and I_(n) = intsin^(n) x dx then nI_(n)-(n-1)I_(n-2) =

If n(ne 1) in N and I_(n) =int sec^(n)x dx then (n-1) I_(n)-(n-2)I_(n-2) =

If n(ne 1) in N and I_(n) = intcot^(n) x dx then I_(n) + (cot^(n-1)x)/(n-1)

If n in N and I_(n) = int(log x)^(n) dx , then I_(n)+nI_(n-1) =

If n(ne 1) in N and I_(n) = int e^(x)/x^(n) dx then I_(n)+ e^(x)/((n-1)x^(n-1))

If n in N and I_(n) = int (log x)^(n) dx , then I_(n) + n I_(n - 1) =

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

In n (ne 1) in N and I_(n) = intcosec^(n) dx then (n-1)(_(n)+cosec^(n-2). cotx =

If n in N and I_(n) = intcos^(n) xdx then nI_(n) - cos^(n-1)x. sinx =