Home
Class 12
MATHS
If I(n) = int x^(n)e^(x) dx where n inN,...

If `I_(n) = int x^(n)e^(x) dx` where `n inN`, then `I_(n) + nI_(n-1) =`

A

`x^(n)e^(x)`

B

`x^(n-1).e^(x)`

C

`1/n x^(n)e^(x)`

D

`nx^(n-1).e^(x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int_0^(1) x^(n).e^(-x) dx, AA n in N then I_(7)-7I_(6) =

int x^(n) log x dx

If n in N and I_(n) = int (log x)^(n) dx , then I_(n) + n I_(n - 1) =

If n in N and I_(n) = int(log x)^(n) dx , then I_(n)+nI_(n-1) =

I_(n) = int_0^(pi/4) tan^(n) x dx, n in N , then I_(10)+I_(8) =

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

If I_(n) = int_(0)^(n) ( 1- sin 2nx)/( 1-cos 2n)dx then I_(1) , I_(2) , I_(3),"........" are in :

int_(-1)^(1) x^(n) (1-x) dx , when n is even =

If I_(n) = int_0^(pi/4) tan^(n) theta d theta , then I_(8)+I_(6) equals