Home
Class 12
MATHS
If int(logx)^(2) dx = x[f(x)]^(2) +Ax [...

If `int(logx)^(2) dx = x[f(x)]^(2) +Ax [f(x)-1]+c` then

A

f(x) = log x, A = 2

B

f(x) = log x, A = -2

C

f(x) = - log x, A = 2

D

f(x) = -log x , A = -2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int((logx)^(2))/(x) dx .

int dx/(x(1+logx)^(2) =

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

int (1+xtanx)^(-2) dx = 1/(x+f(x))+c then f(x) =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

Prove that int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx when f(2a -x) = f(x) and hence evaluate int_(0)^(pi) |cos x| dx .

If int (e^(x)(1+sinx))/(1+cosx) dx = e^(x) f(x) + c then f(x) =

(a) Prove that int_(0)^(2x) f(x) dx = 2int_(0)^(2x) f(x) dx when f(2a-x) =f(x) and hence evaluate int_(0)^(pi) |cos x| dx . (b) Prove that |{:(-a^(2),ab,ac),(bc,-b^(2),bc),(ca,cb,-c^(2)):}|=4a^(2)b^(2)c^(2) .

int (dx)/(x^(2)+2x+2) = f(x)+c implies f(x)