Home
Class 12
MATHS
int (d[f^(2)(x)])/(f(x)+f^2(x)=...

`int (d[f^(2)(x)])/(f(x)+f^2(x)=`

A

`2 log [1+f^(2)(x)]`

B

2 log (1+f(x))

C

log (1+f(x))

D

`log (1+f^(2)(x)))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (f^(')(x))/(f(x) log [f(x)]) dx =

If f(x) is integrable on [0,a], then int_0^(a) (f(x))/(f(x)+ f(a-x)) dx =

The value of the integral int_0^(2a) (f(x))/(f(x) + f(2a - x)) is :

Prove that: int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

int (f(x).g^(')(x)-f^(')(x)g(x))/(f(x).g(x)).[log g(x)-log f(x)]dx =

Observe the following statements A : int (((x^(2)-1)/(x^(2))).e^((x^(2)+1/x)) dx = e^((x^(2)+1)/x) + c R: int f^(')(x).e^(f(x)) dx = f(x) + c Then which of the following is true?

int 2^(x)[f(x) log 2 +f^(')(x)]dx =