Home
Class 12
MATHS
int 2^(x)[f(x) log 2 +f^(')(x)]dx =...

`int 2^(x)[f(x) log 2 +f^(')(x)]dx =`

A

`2^(x)f^(')(x)`

B

`2^(x)f(x)`

C

`2^(x)log 2 f(x)`

D

log 2 f(x)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (f^(')(x))/(f(x) log [f(x)]) dx =

int x^(2) log x dx .

If f(x) = log (tan x), then f^(')(x) =

If f(pi) = 2 and int_0^(pi) [f(x)+f^('')(x)] sin x dx = 5 then f(0)

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

If int e^(x)(1+x)sec^(2)(xe^(x))dx = f(x) +c then f(x) equal to

int_1^(2) (log x)dx =

If f(x) = 1/x^(2) int_2^(x)[t^(2)+f^(')(t)]dt, then f^(')(2) =

int 32x^(3).(log x)^(2) dx =