Home
Class 12
MATHS
int (dx)/(e^(x)+e^(-x)) dx =...

`int (dx)/(e^(x)+e^(-x)) dx =`

A

`tan^(-1)(e^(x))+c`

B

`tan^(-1)(e^(-x))+c`

C

`log (e^(x)-e^(-x))+c`

D

`log (e^(x)+e^(-x))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)-1)/(e^(x)+1) dx =

int dx/((1+e^(x))(1+e^(-x))

int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx .

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

int x/(e^(x^2)) dx

int e^(x)/(e^(x)+1) dx =

int e^(x)/((2+e^(x))(e^(x) +1)) dx =

int_(0)^(1)(dx)/(e^(x)+e^(-x)) is equal to

int_0^1(dx)/(e^x+e^(-x)) is equal to

int (dx)/(sqrt(e^(x)-1) ) =