Home
Class 12
MATHS
inte^(x)((1-x)/(1+x^(2)))^(2)dx equal to...

`inte^(x)((1-x)/(1+x^(2)))^(2)dx` equal to

A

`(e^(x))/(1+x^(2))^(2)+c`

B

`(-e^(x))/(1+x^(2))^(2)+c`

C

`(e^(x))/((1+x^(2)))+c`

D

`(-e^(x))/((1+x^(2)))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is equal to

int cos^(-1)((1-x^(2))/(1+x^(2)))dx

inte^((1/x))/x^(2)dx =

int e^(tan-1)x((1+x+x^2)/(1+x^2))dx equals :

int (x^(9)dx)/((4x^(2)+1)^(6)) is equal to

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

Evaluate : inte^(x)((1)/(x)-(1)/(x^(2)))dx .

int((1+x)^(2))/(x(1+x^(2)))dx =

int (1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to