Home
Class 12
MATHS
int (e^(3 tan^(-1)x)/(1+x^(2))) dx...

`int (e^(3 tan^(-1)x)/(1+x^(2))) dx`

A

`e^(3 sec^(-1)x)/(2x)`

B

`1/3 e^(3 tan^(-1)x`

C

`e^(3 tan^(-1)x`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int e^(mtan^(-1)x)/(1+x^(2)) dx =

int (e^(tan^(-1)x))/(1+x^2) dx .

Evaluate : int(e^(tan^(-1)x))/(1+x^(2))dx.

inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is equal to

Evaluate: int_(0)^(1) (tan^(-1) x)/(1+x^(2)) dx

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

If I = int tan^(-1)((2x)/(1-x^(2)))*dx then I-2x*tan^(-1)x =

int e^(tan^(-1)x)/(1+x^(2))[(sec^(-1) sqrt(1+x^(2)))^(2)+ cos^(-1) ((1-x^(2))/(1+x^(2)))]dx, x gt 0