Home
Class 12
MATHS
int [(log x-1)/(1+(logx)^(2))]^(2) dx=...

`int [(log x-1)/(1+(logx)^(2))]^(2) dx=`

A

`x/((log x)^(2) + 1) + c`

B

`xe^(x)/(1+x^(2)) +c`

C

`x/(x^(2)+1) + c`

D

`log x/((logx)^(2)+1) + c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (logx-1)/((logx)^(2)) dx =

int((logx)^(2))/(x) dx .

int log x dx=

int(log(x^(2)))/(x)dx=

int [ log (log x) + (log x)^(-2)] dx is :

int log x dx .

The value of integral int_0^(oo) (x log x)/((1 + x^2)^2) dx is :

int dx/(x(1+logx)^(2) =

int_(-1)^(1) log (x+sqrt(x^(2)+1))dx =