Home
Class 12
MATHS
int e^(x)(1+xlogx)/x dx =...

`int e^(x)(1+xlogx)/x dx =`

A

`(e^(x) log x)/x +c`

B

`e^(x) (1+log x) +c`

C

`e^(x). Log x + c`

D

`xe^(x) log x + c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int e^(x log a).e^(x) dx =

int e^(x)/(e^(x)+1) dx =

int e^(x)/sqrtx (1+2x)dx =

int (e^(x)-1)/(e^(x)+1) dx =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

int e^(-log x) dx =

Let, f(x) = int e^(x) (x-1)(x-2) dx , then f(x) decreases in the interval

int e^(x)(1+sin x)/(1+cos x) dx is equal to

int sqrt(e^(x)-1)dx =