Home
Class 12
MATHS
int sin^(-1)((2x)/(1+x^(2))) dx = f(x) -...

`int sin^(-1)((2x)/(1+x^(2))) dx = f(x) - log (1+x^(2)) +c then f(x) =`

A

`2x tan^(-1) x`

B

`-2x tan^(-1) x`

C

`x tan^(-1) x`

D

`-x tan^(-1) x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

If f(x)=log ((1+x)/(1-x)) , then

If int (e^(x)(1+sinx))/(1+cosx) dx = e^(x) f(x) + c then f(x) =

If int e^(x) ((1-sinx)/(1-cos x)) dx = f(x) + c then f(x) =

int (1+xtanx)^(-2) dx = 1/(x+f(x))+c then f(x) =

int 2/(1-x^(4)) dx = k log ((1+x)/(1-x)) + tan^(-1)x then k =

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =

If y = f((2x-1)/(x^(2)+1)) and f^(')(x) = sin x^(2) , then dy/dx =

If f(x)=sin^(-1)((2x)/(1+x^(2))) , then f(sqrt3) is