Home
Class 12
MATHS
int (f^(')(x))/(f(x) log [f(x)]) dx =...

`int (f^(')(x))/(f(x) log [f(x)]) dx =`

A

f(x)/(log f(x)) + c

B

f(x) . Log f(x) + c

C

log[log f(x)] + c

D

1/log[log f(x)] +c

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (d[f^(2)(x)])/(f(x)+f^2(x)=

If f(x) is integrable on [0,a], then int_0^(a) (f(x))/(f(x)+ f(a-x)) dx =

int 2^(x)[f(x) log 2 +f^(')(x)]dx =

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

int (f(x).g^(')(x)-f^(')(x)g(x))/(f(x).g(x)).[log g(x)-log f(x)]dx =

Find f'(x) if f(x) =log(cose^x)

Prove that: int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2