Home
Class 12
MATHS
int e^(x)/((2+e^(x))(e^(x) +1)) dx =...

`int e^(x)/((2+e^(x))(e^(x) +1)) dx =`

A

`log((e^(x)+1)/(e^(x)+2)) + c`

B

`log((e^(x)+2)/(e^(x)+1)) + c`

C

`(e^(x)+1)/(e^(x)+2) + c`

D

`(e^(x)+2)/(e^(x)+1) + c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int e^(x)/(e^(x)+1) dx =

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int (dx)/(e^(x)+e^(-x)) dx =

int dx/((1+e^(x))(1+e^(-x))

Let f(x) = (e^(x)+1)/(e^(x)-1) and int_0^(1)( (e^(x)+1)/(e^(x)-1)) x dx = lambda , then int_(-1)^(1) t f(t) dt =

int (e^(x)-1)/(e^(x)+1) dx =

inte^((e^(x)+x)) dx =

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

int_(log (1/2))^(log2) sin ((e^(x)-1)/(e^(x)+1)) dx =