Home
Class 12
MATHS
int e^(x log a).e^(x) dx =...

`int e^(x log a).e^(x) dx =`

A

`a^(x)/(log ae) + c

B

`e^(x)/(1+log_(e)a) + c`

C

`(ae)^(x) + c`

D

`(ae)^(x)/(log_(e) ae) + c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int e^(2/3 log sqrtx) dx =

int e^(x)/(e^(x)+1) dx =

int e^(x).2^(3 log_2x) dx =

int (dx)/(e^(x)+e^(-x)) dx =

int (e^(x)-1)/(e^(x)+1) dx =

int e^(x)(1+xlogx)/x dx =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

The value of int (e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x))dx is equal to

int e^(log(tan x) dx =