Home
Class 12
MATHS
If int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) d...

If `int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) dx = a log((x-1)/(x+1)) +b tan^(-1) (x/2) +c` then the values of a and b are

A

1,-1

B

minus 1,1

C

1/2-1/2

D

1/2,1/2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int 2/(1-x^(4)) dx = k log ((1+x)/(1-x)) + tan^(-1)x then k =

int dx/((x^(2)+1)(x^(2)+4))= k tan^(-1) x + l (tan^(-1)) x/2 then

If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c , then :

If int dx/((x+2)(1+x^(2)) ) = a log(1+x^(2))+b tan^(-1)x+1/5 log (x+2)+c

int [(log x-1)/(1+(logx)^(2))]^(2) dx=

int e^(x)/(x+2) {1+(x+2) log (x+2)} dx =

The value of int((x^(2)+1)/(x^(2)-1))dx is

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to