Home
Class 12
MATHS
int e^(mtan^(-1)x)/(1+x^(2)) dx =...

`int e^(mtan^(-1)x)/(1+x^(2)) dx =`

A

`m e^(mtan^(-1)x) +c`

B

`1/m e^(tan^(-1)x) +c`

C

`1/m e^(mtan^(-1)x) +c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int (e^(tan^(-1)x))/(1+x^2) dx .

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

Evaluate : int(e^(tan^(-1)x))/(1+x^(2))dx.

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

int e^(tan^(-1)x)/(1+x^(2))[(sec^(-1) sqrt(1+x^(2)))^(2)+ cos^(-1) ((1-x^(2))/(1+x^(2)))]dx, x gt 0

int e^(tan-1)x((1+x+x^2)/(1+x^2))dx equals :

int (2x)/(1+x^2) dx

int e^(x)/(e^(x)+1) dx =

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

The value of the integral int e^(tan^(-1) x) * ((1 + x + x^(2)))/((1 + x^(2))) dx is equal to