Home
Class 12
MATHS
if int xe^(2x) dx = e^(2x).f(x)+c, where...

if `int xe^(2x) dx = e^(2x).f(x)+c`, where c is the constant of integration, then f(x) is

A

(3x-1)/4

B

(2x+1)/2

C

(2x-1)/4

D

(x-4)/6

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c , where c is the constant of integration, then f(x)=

if int f (x ) sin x cos x dx = (1)/(2(b^(2) -a^(2)) log f(x ) + c where C is a constant of intergration then f(x) =

If int f(x) sin xcos x dx=(1)/(2(b^(2)-a^(2)) *(log f(x))+C , where C is a costant of integration, then f(x)=

int x.e^((x)^(2))dx =

If int cosex 2x dx = f(g(x)) + c , then

If int (e^(x)(1+sinx))/(1+cosx) dx = e^(x) f(x) + c then f(x) =

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

If the three functions f(x),g(x) and h(x) are such that h(x)=f(x).g(x) and f'(x).g'(x)=c , where c is a constant then (f^('')(x))/(f(x))+(g^('')(x))/(g(x))+(2c)/(f(x)*g(x)) is equal to

int (1+xtanx)^(-2) dx = 1/(x+f(x))+c then f(x) =