Home
Class 12
MATHS
int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =...

`int (e^(2x) - 2e^(x))/(e^(2x)+1) dx = `

A

`log (e^(2x)+1)-tan^(-1)e^(x)+c`

B

`1/2log (e^(2x)+1)-tan^(-1)e^(x)+c`

C

`1/2log (e^(2x)+1)-2tan^(-1)e^(x)`+c

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int e^(x)/(e^(x)+1) dx =

int e^(x)/((2+e^(x))(e^(x) +1)) dx =

int(e^(2x) -1)/(e^(2x) + 1) dx

int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx .

int (e^(x)-1)/(e^(x)+1) dx =

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

int (e^(x) (1+x))/(sin^(2)(xe^(x))) dx =

Let f(x) = (e^(x)+1)/(e^(x)-1) and int_0^(1)( (e^(x)+1)/(e^(x)-1)) x dx = lambda , then int_(-1)^(1) t f(t) dt =

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

int(2x^(2) + e^x)dx