Home
Class 12
MATHS
If f(x) sin xcos x dx=(1)/(2(b^(2)-a^(2)...

If `f(x) sin xcos x dx=(1)/(2(b^(2)-a^(2))``*(log f(x))+C`, where C is a costant of integration, then f(x)=

A

`2/((b^(2)-a^(2))sin 2x)`

B

2/(ab sin 2x)

C

`2/((b^(2)-a^(2))cos 2x)`

D

2/(ab cos 2x)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

If int f(x) sin xcos x dx=(1)/(2(b^(2)-a^(2)) *(log f(x))+C , where C is a costant of integration, then f(x)=

if int f (x ) sin x cos x dx = (1)/(2(b^(2) -a^(2)) log f(x ) + c where C is a constant of intergration then f(x) =

If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c , where c is the constant of integration, then f(x)=

if int xe^(2x) dx = e^(2x).f(x)+c , where c is the constant of integration, then f(x) is

If f(x)cosx dx=(1)/(2)f^(2)(x)+c , then f(x) is :

If f(x) = cos^(-1) [(1-(log x)^(2))/(1+(log x)^(2))] , then f^(')(e) =

If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) and f'(a)g'(x)=c , where c is a constant, then : (f''(x))/(f(x))+(g''(x))/(g(x))+(2c)/(f(x)f(x)) is equal to :

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

If the three functions f(x),g(x) and h(x) are such that h(x)=f(x).g(x) and f'(x).g'(x)=c , where c is a constant then (f^('')(x))/(f(x))+(g^('')(x))/(g(x))+(2c)/(f(x)*g(x)) is equal to