Home
Class 12
MATHS
When xgt0, then intcos^(-1)((1-x^(2))/(1...

When `xgt0`, then `intcos^(-1)((1-x^(2))/(1+x^(2)))dx` is

A

`2[x tan^(-1) x - log(1+x^(2))]+c`

B

`2[x tan^(-1) x +log(1+x^(2))]+c`

C

`2x tan^(-1) x +log(1+x^(2))+c`

D

`2x tan^(-1) x -log(1+x^(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|162 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|219 Videos

Similar Questions

Explore conceptually related problems

int cos^(-1)((1-x^(2))/(1+x^(2)))dx

int((1+x)^(2))/(x(1+x^(2)))dx =

d/dx [cos^(-1)((1-x^(2))/(1+x^(2)))] at x = -1/sqrt2 .

int_(0)^(1)sin^(-1)((2x)/(1+x^2))dx .

inte^(x)((1-x)/(1+x^(2)))^(2)dx equal to

int_0^(1) ((sin^(-1)x)^(2))/(sqrt(1-x^(2))) dx =

int e^(tan^(-1)x)/(1+x^(2))[(sec^(-1) sqrt(1+x^(2)))^(2)+ cos^(-1) ((1-x^(2))/(1+x^(2)))]dx, x gt 0