Home
Class 12
MATHS
The value of the integral int0^pi (x sin...

The value of the integral `int_0^pi (x sin^(2n) x)/(sin^(2n) x + cos^(2n) x)dx` is :

A

`pi^(2)`

B

`pi`

C

`2pi`

D

`3pi`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

The value of the integral intunderset(0)overset(pi)(x sin^(2n)x)/(sin^(2x)x+cos^(2n)x) dx is

The value of the integral int_0^(pi//2) (sin^(100) x - cos^(100) x) dx is :

int_0^(pi/2) x sin^(2) x. cos^(2) x dx =

The value of the integral int_(0)^(pi/2)(sin^(100) x - cos^(100)x)dx is

Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

int_0^(pi/2) sin^(2)x dx =

int_0^(pi) e^(sin^(2)x). cos^(3) x dx =

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx=