Home
Class 12
MATHS
int0^(pi) (sqrt(1+cos2x)/(sqrt2)) dx =...

`int_0^(pi) (sqrt(1+cos2x)/(sqrt2)) dx =`

A

minus 2

B

2

C

0

D

minus 3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2) (sqrt(1+cos2x)/(sqrt2)) dx =

int_0^(2pi) sqrt((1-cos2x)/2) dx =

int_0^(pi//2) (sqrt( cot x))/(sqrt(cot x) - sqrt(tan x)) dx is :

int_0^(pi) sqrt x dx =

int_0^(2pi) sqrt(1 + sin( x/2)) dx is :

int_0^(pi//2)(sqrt(sin x))/(sqrt(sin x) + sqrt(cos x)) dx equals:

Evaluate int _(0)^(pi//2) sqrt(1+ cos x ) dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (c) int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sin x) + sqrt(cos x))dx

int_0^(pi/2) (cos x)/(sinx + cosx) dx =