Home
Class 12
MATHS
Let f(x) = {:[(e^(cos x) sinx",", "for" ...

Let `f(x) = {:[(e^(cos x) sinx",", "for" |x| le 2),(2,"otherwise"):}` then : `int_(-2)^(3) f(x) dx` = …………….

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

If f(x) ={(e^(cosx)sinx; |x| le 2),(2 ; otherwise'):} then int_(-2)^(3) f(x) dx is equal to

Given fuction, f(x)={(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

Let f(x) = e^(cos^(-1)sin(x + pi//3)) , Then :

If g(x) = (f(x)-f(-x))/2 defined over [-3,3] and f(x) = 2x^(2)-4x+1 , then int_(-3)^(3) g(x) dx =

If 2f(x)- 3f(1/x) = x then int_1^(e) f(x) dx =

If f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi) , then int_e^(pi) xf(x) dx is equal to

Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx

Let f(x)=x^3-3x^2+2x Find f'(x)