Home
Class 12
MATHS
Let A = int0^(1) e^(t)/(t+1) dt, then in...

Let `A = int_0^(1) e^(t)/(t+1) dt`, then `int_0^(1) (t.e^(t^(2)))/(t^(2)+1) dt =`

A

A

B

2A

C

1/2 A

D

`A^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int (1+t^(2))/(1+t^(4))dt =

If int_0^1 (e^t)/(1 + t) dt = a, then int_0^1 (e^t)/((1 + t)^(2))dt is equal to:

Let f(x) = (e^(x)+1)/(e^(x)-1) and int_0^(1)( (e^(x)+1)/(e^(x)-1)) x dx = lambda , then int_(-1)^(1) t f(t) dt =

If f(x) be a continous function for all real values of x and satisfies int_3^(x) f(t) dt = x^(2)/2 + int_x^(8) t^(2) f(t) dt then int_(-1/2)^(1) f(x) dx =

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

The point of extremum of the function phi (x) = int_1^(x) e^(t^(2)/2) (1-t^(2)) dt are