Home
Class 12
MATHS
int(-2)^(1) cot^(-1) (1/x) dx =...

`int_(-2)^(1) cot^(-1) (1/x) dx =`

A

`(9pi)/2+ 2 tan^(-1) 2-1/5 log (5/2)`

B

`pi/4- 2 tan^(-1) 2+ 1/2 log (5/2)`

C

`(9pi)/2- 2 tan^(-1) 2+1/5 log (5/2)`

D

`pi/4+ 2 tan^(-1) 2- 1/2 log (5/2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int_(-3)^(3) cot^(-1)x dx=

int_(-3)^(3) cot^(-1)x dx =

int_(-1)^(1) tan^(-1) x dx =

int_(-1)^(1) x^(3) ((1-x^(2)) dx

int_(0)^(1)sqrt((1+x)/(1-x)) dx =

I = int_(-2)^(1) (tan^(-1)x+ cot^(-1)(1/x) dx

int_(0)^(1) x (1-x)^(3//2) dx=

int_(-1)^(1)(x+1) dx.

int_(-1)^(1) xe^(x) dx =